О древних-древних лесах...Есть на свете один интересный термин - лес Лайман-альфа (Lyman-alpha forest).
И бытует этот термин не в ботанике, не в экологии и даже не в географии - термин это астрономический. Так что в астрономии есть не только звезды и галактики, планеты и кометы, квазары и блазары, а также эжекторы, пропеллеры, аккреторы и георотаторы с мягкими гамма-репитерами - в ней еще шумят и колосятся (а при случае, млеют и колышутся) целые леса.
Что это за лес такой?
Вспомним, как поглощается электромагнитное излучение. Представим себе луч света, состоящий из фотонов разной энергии (длины волны), проходящий через облако какого-то газа. Те фотоны, энергия которых строго равна разности энергий между энергетическими уровнями электронов на орбите атома, захватываются атомами. Потом электроны возвращаются на прежние орбиты, атомы переизлучают фотоны этой энергии в разных направлениях, но в самом луче этих фотонов уже оказывается очень мало - они разлетаются не в направлении движения луча, а в разные стороны. Поэтому, если смотреть со стороны, подсвеченный газ будет светиться тем самым светом, длина волны которого совпадает с энергией ионизации - а вот если смотреть на луч, этих фотонов в нем будет не хватать. Именно так формируются спектры поглощения - во спектре излучения появляются темные линии, показывающие дефицит поглощенных газом и переизлученных во все стороны фотонов с данными длинами волн, которые соответствуют характерной для этого газа энергии.
На самом деле, газ поглощает фотоны с несколькими значениями энергии, потому что электроны имеют множество орбит, и, соответственно, с самой низкой, захватив фотоны одной энергии, они могут "подняться" на вторую, другой, более высокой энергии - на третью и так далее. Поэтому в спектре поглощения появляется целая серия линий.
Серия линий поглощения нейтрального водорода называется серией Лаймана. А самая низкоэнергетическая линия этой серии, то есть, линия, соответствующая энергии возбуждения электрона в атоме водорода при его переходе с нормальной орбиты на ближайшую к ней, называется линией Лайман-альфа (обозначается Lα ). Длина волны этой линии - 151,5668 нанометров (то есть, длина волны поглощаемого водородом излучения линии Лайман-альфа соответствует ультрафиолетовому свету).
Пока все сказанное относится не к астрономии, а к физике, и остается совершенно неясным, где же тут лес.
Лес появляется именно в астрономии - в ней часто появляются странные вещи. В данном случае лес появляется из-за красного смещения.
Представим себе луч света, идущий издалека и долго. По-настоящему издалека и по-настоящему долго. С расстояния многих миллиардов световых лет и в течение многих миллиардов лет. Пока луч путешествует, Вселенная расширяется, в ней рождается новое пространство (в каждой ее точке), поэтому длина волны фотонов, составляющих луч, постепенно растет, их энергия падает, и фотоны "краснеют" (напомню, что красный свет соответствует меньшей энергии и большей длине волны фотона, а фиолетовый - наоборот). В какой-то момент этот луч попадает в облако молекулярного водорода и теряет те фотоны, которые в этот момент имели длину, соответствующую линии поглощения Лайман-альфа. Вырвавшись, он летит дальше - теперь в нем образуется дефицит фотонов длиной волны 151,5668 нанометров.
Дальше он продолжает свои странствия. Луч все краснеет, длины волн фотонов увеличиваются, и, соответственно, "дырка в спектре", то есть, та длина волны, которая отсутствует, тоже смещается в сторону больших длин волн. Через сотни миллионов лет в луче уже не хватает фотонов с длиной волны не 151,5668, а, скажем, 160 нанометров. А длину волны 151,5668 нм теперь имеют другие фотоны - которые в наличии имеются, потому что раньше они имели другую, большую энергию, меньшую длину волны, и не поглощались. И тут луч света находит еще одно облако молекулярного водорода...
Когда он вырывается из него, у него теперь не хватает фотонов двух длин волн: 160 (их и не было) и 151,5668 нанометров...
Луч все летит и летит, краснеет и краснеет, и встречает еще одно облако молекулярного водорода... Нетрудно понять, что после того, как он пройдет через него, в нем не будет хватать фотонов уже трех длин волн - двух "старых" и одной "новой"...
И в результате, когда этот луч попадет к нам, в его спектре обнаружится целый частокол темных линий поглощения, соответствующих его истории - тем облакам молекулярного водорода, сквозь которые он пролетал в разные годы и при разных значениях красного смещения. Этот частокол и называется лесом Лайман-альфа.
Легко понять, что, анализируя этот лес, то есть, изучая спектр излучения дальних источников света, скажем, древних (и, соответственно, далеких) квазаров) и определяя, каких длин волн в этом спектре не хватает, можно узнать, через какие облака нейтрального водорода это излучение прошло на своем пути к нам, и на каком расстоянии (красном смещении) от нас они располагались. А следовательно, изучение спектров дальних источников дает много интересной информации: как располагались облака водорода миллиарды лет назад, какова была концентрация водорода в облаках, каким было значение постоянной Хаббла в те времена (то есть, по расстоянию между линиями можно узнать темп расширения Вселенной миллиарды лет назад). Можно даже обнаружить, что излучение квазаров с красным смещением больше шести подвергалось такому издевательству очень активно, а более близких - гораздо слабее и сделать вывод о том, что примерно тринадцать миллиардов лет назад нейтрального водорода во Вселенной было много, а в более поздние времена его стало намного меньше - не потому, что водород пропал, а потому, что он стал ионизированным, а у ионизированного водорода совсем другой спектр поглощения. И задуматься над этим обстоятельством.
Соответственно, изучение леса Лайман-альфа в спектрах далеких квазаров является одним из важных инструментов изучения истории расширения Вселенной и предсказания ее будущего.
Выглядит лес Лайман-альфа обычно так:
Мы видим спектры двух квазаров, удаленных на разное расстояние.
На верхнем рисунке - спектр знаменитого, первого из открытых, одного из самых близких и самого яркого на земном небе квазара (блазар 3С273, красное смещение z=0,158, удаление по времени распространения примерно 2,5 миллиарда световых лет).
На нижнем - спектр квазара Q1422+2309 (красное смещение z=3,62, удаление 12 миллиардов лет).
Вот он, на нижнем рисунке - лес линий поглощения излучения нейтральным водородом за то время, пока длины волн этого излучения, путешествовавшие двенадцать миллиардов лет, увеличивались из-за расширения Вселенной. А у ближнего квазара, свет от которого распространялся всего 2,5 миллиарда лет уже в те времена, когда гигантских облаков молекулярного водорода во Вселенной не осталось (они давно проэволюционировали, превратившись в звезды в галактиках) таких линий нет.
Разница спектров очень наглядна.
А вот как выглядит тот же участок спектра для еще более удаленного источника - квазара SDSS J1044-0125 на красном смещении z=5,8 (расстояние по времени распространения 12,8 миллиардов световых лет:
Мы видим, что для источника на z=5,8 лес Лайман-альфа становится почти сплошным - в те далекие времена нейтрального водорода было очень много, потому что вторичная ионизация межзвездного газа только начиналась, и поглощение длилось почти непрерывно - поглощались и рассеивались почти все фотоны, которые достигали в результате красного смещения данной длины волны.
Этот эффект (наличие в спектре очень удаленных объектов почти непрерывной полосы поглощения излучения нейтральным водородом) называется эффектом Ганна-Петерсона. А сам провал в спектре - желобом Ганна-Петерсона (Gunn–Peterson trough).
И замечательная иллюстрация эффекта Ганна-Петерсона для разных красных смещений, а заодно - и самого красного смещения.
Мы видим спектры полутора дюжин квазаров с красными смещениями от 5,74 до 6,42 - хорошо заметно, как с ростом красного смещения и, соответственно, расстояния до квазара спектры смещаются в сторону больших длин волн (в красную часть спектра).