Кое-что о том, что иногда падает на звездыНачну издалека.
Вокруг нейтронной звезды SWIFT J1756.9 обращается компаньон массой не более тридцати масс Юпитера. И эта пара очень интересна...
Собственно, интересного в этой паре много.
Во-первых, интересен сам пульсар - он имеет массу в полторы солнечных и вращается с сумасшедшей скоростью, его период составляет 5,5 миллисекунды (представили себе шар диаметром двадцать километров, вращающийся со скоростью 182 оборота в секунду?). Это, конечно, не рекорд скорости - но для тренировки воображения годится.
Во-вторых, интересен (и весьма) период обращения его компаньона. Он удален на 370 тысяч километров от нейтронной звезды (меньше, чем Луна от Земли) и обращается вокруг нее за 54 минуты 40 секунд (меньше, чем за час!) Вообразили?
Ну, и наконец, интересна история этой пары. Когда-то компаньон пульсара сам был звездой, удаленной от главного компаньона пары на большее расстояние. Потом главный компаньон взорвался сверхновой и превратился в нейтронную звезду, малый компаньон этот взрыв, а после с течением времени согласно неумолимым законам эволюции стал красным гигантом. При этом нейтронная звезда оказалась внутри его оболочки - и вращение компаньонов затормозилось, а сами они резко сблизились. После этого оболочка красного гиганта рассеялась, а нейтронная звезда быстро и эффективно стащила и съела большую часть остатка звезды-компаньона, оставив от нее лишь скелет (при этом газ, падающий на поверхность нейтронной звезды, раскрутил ее до столь высоких скоростей).
Но самое интересное - расчет показывает, что, в сущности, нейтронная звезда и сейчас вращается под оболочкой (то есть, внутри) своего компаньона-карлика, меньшего ее по массе примерно в пятьдесят раз.
Так что, если посмотреть на эту пару со стороны, скорее всего, можно будет увидеть лишь дергающийся с периодом в 55 минут остаток звезды с огромным горбом (аккреционным диском находящейся под ее поверхностью нейтронной звезды).
Вот бы увидеть поближе...
Соответственно, посмотрев на эту систему, в которой нейтронная звезда нырнула под оболочку звезды обычной, задаешься вопросом - а может ли нейтронная звезда пойти дальше и "утонуть" в обычной?
Оказывается, вполне может. После взрыва сверхновой в двойной системе нейтронная звезда в принципе, может получить импульс, который приведет ее к столкновению с ее компаньоном (мы же помним, что взрывы сверхновых не являются симметричными, и остатки сверхновых смещаются с места взрыва, причем подчас с высокой скоростью). Либо в тесной двойной системе, подобной описанной, взаимное вращение компонентов неминуемо затормозится, и нейтронная звезда начнет погружаться вглубь обычной.
В результате может образоваться удивительный объект - "обычная" звезда, внутри которой находится (причем, на большой глубине) нейтронная. Такой гипотетический класс звезд получил название объектов Торна-Житков. По имени тех, кто рассчитал такую конфигурации - Кипа Торна и Анны Житков.
Что происходит внутри столь причудливой звезды и как она выглядит?
Мы помним, что поверхность нейтронной звезды очень горяча - начинает свою жизнь с миллиардов градусов и в течение дальнейшей жизни медленно снижается до сотен миллионов. В любом случае, скорее всего, при нормальных сценариях образования объекта Торна-Житков, ее температура является гораздо большей, чем температура ядер даже самых массивных звезд-гипергигантов (существует, конечно, сценарий случайного неразрушающего столкновения старой холодной нейтронной звезды с обычной звездой, в котором дело обстоит не так, но он предельно маловероятен).
В результате после поглощения нейтронной звезды, внутри обычной звезды начинают бурно идти разнообразные термоядерные реакции в приповерхностном слое нейтронной звезды, там формируется сверхгорячий лиск аккреции (внутри звезды!) - и звезда, поглотившая нейтронную, как и положено, из-за резко возросшего тепловыделения начинает увеличиваться в размерах, независимо от возраста и стадии своей эволюции превращаясь в красный гигант или сверхгигант. В это время отличить объект Торна-Житков от обычного гиганта или сверхгиганта можно только по химическому составу (и, соответственно, спектру) - из за колоссальных температур в ней образуются и могут быть замечены элементы, более тяжелые, чем наблюдаются в обычных звездах и, в том числе, более тяжелые, чем железо - вплоть до теллура.
Из-за очень высоких температур внешние слои звезды может просто "сдуть" в пространство - и тогда объект Торна-Житков будет наблюдаться как звезда Вольфа-Райе (
http://forum.kamsha.ru/index.php?topic=101.msg77141#msg77141,
http://forum.kamsha.ru/index.php?topic=1883.msg96919#msg96919), с теми же оговорками о спектре.
Судьба объектов Торна-Житков не совсем ясна и может быть различной.
Во-первых, ясно, что живут они недолго - порядка десятков и сотен тысяч лет.
Скорее всего, они взрываются как сверхновые при коллапсе нейтронной звезды в черную дыру (за счет аккреции внутренних слоев звезды на нее и прироста массы), оставляя после себя черную дыру и рассеивающееся облако остатков взрыва. Но возможен вариант, при котором мощный поток излучения сбрасывает внешние слои звезды, оставляя внутри медленно вращающуюся нейтронную звезду.
В любом случае, из-за очень короткого времени жизни объекты Торна-Житков должны быть весьма редкими. Согласно некоторым подсчетам, в Галактике их может быть всего лишь несколько десятков, максимум, пара сотен.
Интересно то, что аналогичным образом звезда-компаньон может захватить не нейтронную звезду, а черную дыру, также оставшуюся после гибели более массивного компонента тесной двойной системы (мы же помним, что после взрыва сверхновой в зависимости от массы прогенитора может остаться нейтронная звезда, черная дыра или не остаться ничего). Обратите внимание, насколько объект Торна-Житков этого типа, в сущности, внешне схож с квазизвездой (
http://forum.kamsha.ru/index.php?topic=1702.msg78242#msg78242).
В начальный момент такой объект Торна-Житков несколько отличается от случая захвата нейтронной звезды - ведь черную дыру нельзя назвать раскаленной. Но захваченная черная дыра вскоре сформирует внутри захватившей ее звезды аккреционный диск, который нагреется до огромных температур, так что отличия нивелируются. На зрелой стадии два типа объектов Торна-Житков, отличающихся захваченным содержимым сверхгиганта (нейтронной звездой и черной дырой), со стороны неотличимы. Разница между ними заключается только в их будущем - нейтронная звезда, скорее всего, как сказано ранее, сколлапсирует в черную дыру, спровоцировав грандиозный взрыв захватившей ее звезды, а черная дыра уже никуда не сколлапсирует - она просто рано или поздно захватит материал ядра звезды, а внешние оболочки объекта Торна-Житков будут рассеяны в пространстве (так же, как это должно было происходить с квазизвездами).
Расчеты показывают, что эволюция объектов Торна-Житков происходит удивительно быстро. На то, чтобы затормозиться внутри звезды и опуститься к ее центру, нейтронной звезде или черной дыре требуется время порядка тысячи лет. При этом окончательное торможение (от начала проникновения в ядро до момента, когда нейтронная звезда полностью в нем "тонет" ) занимает всего месяц.
При этом движение поглощенного объекта внутри поглотившей его звезды является сверхзвуковым (до трех скоростей звука), что, как Вы понимаете, не способствует стабильности внешних слоев звезды.
После того, как нейтронная звезда или черная дыра занимает свое место в ядре, со стороны должен наблюдаться "полностью конвективный сверхгигант" - красный холодный сверхгигант с необычно высоким содержанием тяжелых металлов в спектре (см. выше).
С объектами Торна-Житков связана интересная детективная история.
1. 13 января 2014 года была опубликована информация о обнаружении в Малом Магеллановом облаке кандидата на роль первого идентифицированного объекта Торна-Житков - звезды-сверхгиганта HV 2112 с необычайно высоким содержанием лития и достаточно экзотических для звезд (по крайней мере, звезд, не относящихся к гипергигантам) элементов - рубидия и молибдена - что теоретически объяснимо именно существенно более сложным характером термоядерных реакций во внешних слоях объектов Торна-Житков, обусловленных присутствием внутри объекта чрезвычайно горячей нейтронной звезды.
2. В 2015 году исследования определенно вселили уверенность в том, что этот самый объект HV 2112 в SMC действительно мог оказаться объектом Торна-Житков.
3. Увы. Спустя считанные месяцы детальные наблюдения показали, что если этот объект действительно находится в SMC, его скорость (вернее, ее поперечная проекция) составляет около трех тысяч километров в секунду. Это много. Это слишком много. Это настолько много, что представить себе процесс, который придает звезде в указанных условиях такую скорость, практически невозможно.
Отсюда последовал грустный вывод - скорее всего, звезда находится намного ближе и является случайно спроектировавшейся на Магелланово облако звездой гало Млечного пути, и, стало быть, ее яркость намного ниже, чем предполагалось. А в этом случае, она - вовсе не объект Торна-Житков, а всего лишь звезда класса S (
http://forum.kamsha.ru/index.php?topic=101.msg77140#msg77140), бывший компаньон массивной звезды, относившейся к AGB (
http://forum.kamsha.ru/index.php?topic=101.msg77141#msg77141). захвативший металлы из ее внешней оболочки.
4. А еще спустя некоторое время уточненная информация о собственном движении объекта HV 2112 с учетом данных более ранних фотометрических каталогов заставила думать, что наиболее вероятным является факт завышения оценки собственного движения при последних наблюдениях. Таким образом, возникло предположение, что объект все же находится на большом расстоянии (в Малом Магеллановом облаке) и, следовательно, с большой долей вероятности является объектом Торна-Житков.
5. Уже в 2018 году были опубликованы результаты очень длительных и глубоких наблюдений характеристик группы красных сверхгигантов Малого Магелланова облака. Принадлежность HV 2112 этой галактике подтверждена практически несомненно - но изучение ее характеристик и архивных данных показало, что реальная масса звезды значительно ниже определенной первоначально. В результате сделан вывод, что спектр, светимость и иные характеристики звезды HV 2112 характерны не для объекта Торна-Житков, а для куда менее массивной стареющей звезды промежуточной массы (около пяти солнечных), с внешней оболочкой, обогащенной металлами от ранее погибшего компаньона.
6. И Вы думаете, на этом можно ставить точку? Напрасно. В этом же исследовании был опубликован материал о совсем другой звезде все в том же Малом Магеллановом облаке - HV11417 - масса которой, светимость и характер спектра достоверно указали, что она является объектом Торна-Житков.